

Tetrahedron: Asymmetry 9 (1998) 1065-1072

Asymmetric aza-Claisen rearrangement of allyl imidates catalyzed by homochiral cationic palladium(II) complexes

Yasuhiro Uozumi*, a Kazuhiko Kato b and Tamio Hayashi* b.*

^a Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8603, Japan ^bDepartment of Chemistry, Faculty of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

Received 4 February 1998; accepted 6 February 1998

Abstract

The asymmetric aza-Claisen rearrangement of (E)-3-alkyl-2-propenyl N-[4-trifluoromethyl)phenyl]benzimidates was catalyzed by a homochiral cationic palladium(II) complex generated from $PdCl_2\{(S)$ -2-(2-diphenylphosphino)phenyl-4-benzyloxazoline} and silver tetrafluoroborate (Pd:silver=1:1) to give (S)-N-(1-alkyl-2-propenyl)-N-[4-(trifluoromethyl)phenyl]benzamide of up to 81% ee. © 1998 Published by Elsevier Science Ltd. All rights reserved.

1. Introduction

Transition metal catalyzed [3,3]-sigmatropic rearrangements are among the important transformations in modern synthetic organic chemistry. However, only scattered attention has been paid to catalytic asymmetric [3,3]-sigmatropic rearrangements which would constitute a powerful strategy for the synthesis of a variety of optically active compounds. The aza-Claisen rearrangement of allyl imidates catalyzed by divalent palladium species is a typical case. Recently, Overman reported the first example of a catalytic asymmetric rearrangement of allyl imidate 1a, where a cationic palladium(II) complex bearing an optically active tertiary diamine as a ligand catalyzed the rearrangement to give N-allyl amide 2a in up to 60% ee.⁴

On the other hand, we have reported the palladium-catalyzed asymmetric Heck reaction⁵ and the Wacker-type reaction⁶ where a cationic palladium(II) species plays a key role in the activation of the carbon-carbon double bond as well as in the enantioface selection.^{7,8} As a part of our efforts to develop a wide utility of the cationic chiral palladium(II) catalysts, the asymmetric aza-Claisen rearrangement of allyl imidates was examined. We describe herein that higher enantioselectivity (up to 81% ee) was obtained by use of a cationic palladium(II) catalyst of 2-(2-diphenylphosphino)phenyl-4-alkyloxazoline

^{*} Corresponding author. E-mail: thayashi@th1.orgchem.kuchem.kyoto-u.ac.jp

(phox, 4) in the asymmetric aza-Claisen rearrangement of 3-alkyl-2-propenyl N-arylbenzimidates 1 to N-(1-alkyl-2-propenyl)-N-arylbenzamide 2 of up to 81% ee (Scheme 1).

1a: Ar = $4 \cdot CF_3C_6H_4$, R = $CH_2CH_2CH_3$ 1b: Ar = C_6H_5 , R = $CH_2CH_2CH_3$ 1c: Ar = $4 \cdot CF_3C_6H_4$, R = $CH(CH_3)_2$

Scheme 1.

2. Results and discussion

Rearrangement of (E)-2-hexenyl N-[4-(trifluoromethyl)phenyl]benzimidate 1a to N-(1-hexen-3-yl)-N-[4-(trifluoromethyl)phenyl]benzamide **2a** was examined in the presence of palladium(II) catalysts coordinated with chiral bis(oxazoline), phosphino-oxazoline, and bis(phosphine) ligands under several reaction conditions (Scheme 1). The N-allyl amide 2a was isolated by chromatography on silica gel and the enantiomeric excess was determined by HPLC analysis using a chiral stationary column (Chiralpack AD; eluent: hexane:isopropanol=9:1). The absolute configuration was determined by comparison of the specific rotation with that reported for optically active 2a.4 The results summarized in Table 1 reveal that the most stereoselective ligand is (S)-(+)-2-(2-(diphenylphosphino)phenyl)-4-(benzyl)oxazoline ((S)-bn-phox 4a)⁹ (entry 1). According to the procedures reported by Overman,⁴ a cationic palladium catalyst was generated from dichloro[(S)-(+)-2-(2-(diphenylphosphino)phenyl)-4-(benzyl)oxazolyl]palladium(II) [PdCl₂{(S)-bn-phox}] by treatment with 1 equiv. (to Pd) of silver tetrafluoroborate. 10 The rearrangement of 1a proceeded in refluxing 1,2-dichloroethane to give 81% yield of N-allyl amide (S)-2a of 70% ee ($[\alpha]_D^{25}$ +50.5 (c 0.23, dichloromethane), lit.⁴ for (R)-2a of 55% ee: $[\alpha]_D^{25}$ -37.2 (c 0.5, dichloromethane)). The reaction carried out at 40°C raised the enantiomeric excess to 76% ee, though the reaction is slower (entry 2). Dicationic palladium(II) catalyst generated by addition of 2 equiv. (to Pd) of silver tetrafluoroborate is not effective for the rearrangement to 2a, resulting in carbon-oxygen bond cleavage to give N-[4-(trifluoromethyl)phenyl]benzamide (3) (entry 3). The effects of the added silver salts on the reaction pathway are consistent with those reported by Overman.⁴ Without silver salt, $PdCl_2\{(S)$ -bn-phox) did not catalyse the rearrangement at all. The reaction with other phosphino-oxazoline ligands, which have isopropyl $4b^9$ and t-butyl $4c^9$ substituents at the C4-position, proceeded with 36% and 50% enantioselectivity, respectively (entries 5 and 6). Ferrocene analog 5¹¹ exhibited moderate catalytic activity and stereoselectivity (entry 7). Chiral bis(oxazoline) ligands, 12 2,2bis(oxazolyl)propane 6, 13 2,2'-bioxazolyl 714 and 2,2'-bis[4-(benzyl)oxazolyl]-1,1'-binaphthyl ((S,S)bn-boxax) 8¹⁵ gave 2a with much lower enantioselectivity (entries 8, 9 and 10). The palladium complex of (S)-BINAP 9^{16} was found to be stereoselective, but less catalytically active (entry 11).

entry	subs	trate catalyst	time (h)	yield of productsb		% ee of 2 ^c
				2 (%)	3 (%)	(abs. config.)d
1	1a	PdCl ₂ {(S)-bn-phox 4a}/AgBF ₄	15	81	0	70 (S)
2 <i>e</i>	1a	PdCl ₂ {(S)-bn-phox 4a}/AgBF ₄	24	41	3	76 (S)
3 <i>f</i>	1a	PdCl ₂ {(S)-bn-phox 4a}/2AgBF ₄	24	2	71	52 (S)
48	1 a	$PdCl_2\{(S)-bn-phox 4a\}/none$	24	0	0	-
5	1a	PdCl ₂ {(S)-ip-phox 4b}/AgBF ₄	24	34	4	36 (S)
6	1a	PdCl ₂ {(S)-tb-phox 4c}/AgBF ₄	24	12	44	50 (S)
7	1a	PdCl ₂ (5)/AgBF ₄	24	54	30	50 (S)
8 <i>h</i>	1a	PdCl ₂ (CH ₃ CN) ₂ /6/AgBF ₄	24	69	10	2 (S)
9h	1a	PdCl ₂ (CH ₃ CN) ₂ /7/AgBF ₄	24	52	24	5 (S)
10	1a	PdCl ₂ {(S,S)-bn-boxax 8}/AgBF ₄	24	44	33	17 (S)

72

15

24

56

88

30

36

27

6

37

67 (R)

28 (R)

47 (S)

81 (S)

Table 1
Asymmetric rearrangement of 1 catalyzed by cationic palladium(II) complexes^a

11

12

13

14

1a

1 a'

1 b

1 c

PdCl₂{(S)-BINAP 9}/AgBF₄

PdCl₂{(S)-bn-phox 4a}/AgBF₄

PdCl₂{(S)-bn-phox 4a}/AgBF₄

PdCl₂{(S)-bn-phox 4a}/AgBF₄

$$(S)-bn-phox (4a): R = CH_2Ph$$

$$(S)-ip-phox (4b): R = CH(CH_3)_2$$

$$(S)-tb-phox (4c): R = C(CH_3)_3$$

$$(S)-tb-phox (4c): R = C(CH_3)_3$$

$$(S,S)-bn-boxax (8):$$

$$R = (S,S)-bn-boxax (8):$$

$$R = (S,S)-bn-box$$

The rearrangement of (Z) isomer $\mathbf{1a}'$ gave an enantiomeric product (R)- $\mathbf{2a}$ though the selectivity was lower than that observed for (E) isomer $\mathbf{1a}$ (entry 12). Allyl imidate $\mathbf{1b}$ which has a phenyl substituent

^a All reactions were carried out in the presence of palladium catalysts (10 mol %) prepared from palladium dichloride complexes and silver tetrafluoroborate (Pd/silver = 1/1) in refluxing dichloroethane unless otherwise noted. ^b Isolated yield. ^c Determined by HPLC analysis with chiral stationary phase column, Chiralpack AD. ^d The absolute configuration was determined by comparison of the optical rotation with that reported for optically active 2a (ref. 4). ^e The reaction was carried out at 40 °C. ^f The reaction with 20 mol % of silver tetrafluoroborate (Pd/silver = 1/2). ^g Without silver salt. ^h Palladium(II)-bis(oxazoline) complexes were prepared from PdCl₂(CH₃CN)₂ and optically active bis(oxazoline) ligands 6 and 7, and then used without purification.

at the imidate nitrogen instead of 4-trifluoromethylphenyl gave N-allyl benzamide **2b** in high yield with moderate enantiomeric purity (entry 13). The highest stereoselectivity was observed in the reaction of **1c**, which gave **2c** in 81% ee under the same reaction conditions (entry 14).

In conclusion, it was found that a cationic palladium(II) complex generated from $PdCl_2\{(S)\text{-bn-phox}\}$ and silver tetrafluoroborate was an efficient catalyst for asymmetric aza-Claisen rearrangement of allyl imidates giving N-allyl amide derivatives of high % ee.

3. Experimental

3.1. General

Optical rotations were measured with a JASCO DIP-370 polarimeter. 1H NMR spectra were measured with a JEOL JNM-LA500 (500 MHz) spectrometer in CDCl₃ with tetramethylsilane as an internal standard. Chemical shifts are reported in δ ppm. HPLC analyses were performed on a Shimadzu LC-9A liquid chromatograph system with chiral stationary phase column, Daicel Chemical Co. Ltd, Chiralpack AD.

3.2. Materials

Optically active ligands, (S)-bn-phox 4a, (S)-ip-phox 4b, (S)-tb-phox 4c, (S)-(-)-2-[(S)-2-(diphenylphosphino)ferrocenyl]-4-(isopropyl)oxazoline 5, 11 2,2-bis(oxazolyl)propane 6, 13 2,2'-bioxazolyl 7, 14 and 2,2'-bis[4-(benzyl)oxazolyl]-1,1'-binaphthyl ((S,S)-bn-boxax) 8^{15} were prepared according to the reported procedures. Optically active palladium(II) complex PdCl₂{(S)-BINAP} was prepared according to the reported procedure. 5e,17 THF, benzene and hexane were distilled from sodium benzophenone ketyl under nitrogen. Dichloromethane and dichloroethane were distilled from calcium hydride under nitrogen.

3.3. Preparation of PdCl₂(phosphine-oxazoline) complexes

A typical procedure is given for the preparation of dichloro[(S)-2-(2-(diphenylphosphino)phenyl)-4-(benzyl)oxazoline]palladium(II) (PdCl₂{(S)-bn-phox}):

3.3.1. Dichloro[(S)-2-(2-(diphenylphosphino)phenyl)-4-(benzyl)oxazoline]palladium(II) ($PdCl_2\{(S)-bn-phox\}$)

A solution of 250 mg (0.59 mmol) of (S)-(+)-2-(2-(diphenylphosphino)phenyl)-4-(benzyl)oxazoline ((S)-bn-phox 4a) in 5 mL of benzene was added to a mixture of 154 mg (0.59 mmol) of $PdCl_2(CH_3CN)_2$ and 5 mL of benzene. The reaction mixture was stirred for 20 min. A yellow precipitate was collected by filtration and washed with benzene to give 352 mg (98% yield) of dichloro[(S)-(+)-2-(2-(diphenylphosphino)phenyl)-4-(benzyl)oxazoline]palladium(II): mp 247°C (dec); $[\alpha]_D^{20}$ +497 (c 0.27,

chloroform); ^{1}H NMR δ 1.68 (br t, J=12.7 Hz, 1H), 3.87 (dd, J=13.3, 3.5 Hz, 1H), 4.30 (dd, J=8.8, 4.9 Hz, 1H), 4.39 (br t, J=9.3 Hz, 1H), 5.80 (m, 1H), 6.99 (m, 1H), 7.21 (m, 5H), 7.45 (m, 4H), 7.58 (m, 5H), 7.74 (m, 3H), 8.10 (m, 1H); ^{13}C NMR δ 40.64, 67.98, 72.39, 162.09; ^{31}P NMR δ 26.70. Anal. calcd for $C_{28}H_{24}NOPCl_{2}Pd$: $C_{36}H_{36}$

3.3.2. $Dichloro[(S)-2-(2-(diphenylphosphino)phenyl)-4-(isopropyl)oxazoline]palladium(II) (PdCl₂{(S)-ip-phox})$

89% Yield: mp 239°C (dec); $[\alpha]_D^{20}$ +704 (c 0.08, chloroform); 1H NMR δ 0.02 (d, J=6.9 Hz, 3H), 0.82 (d, J=7.4 Hz, 3H), 2.68 (m, 1H), 4.38 (dd, J=9.3, 5.4 Hz, 1H), 4.50 (br t, J=9.3 Hz, 1H), 5.61 (m, 1H), 6.82 (m, 1H), 7.36–7.60 (m, 9H), 7.71 (m, 3H), 8.14 (m, 1H); 13 C NMR δ 12.80, 18.57, 30.47, 68.99, 71.30, 161.40; 31 P NMR δ 21.01. Anal. calcd for $C_{24}H_{24}NOPCl_2Pd$: C, 52.34; H, 4.39; N, 2.54. Found: C, 52.05; H, 4.33; N, 2.53.

3.3.3. Dichloro[(S)-2-(2-(diphenylphosphino)phenyl)-4-(t-butyl)oxazoline]palladium(II) ($PdCl_2\{(S)-tb-phox\}$)

78% Yield: mp 263°C (dec); $[\alpha]_D^{20}$ +464 (c 0.18, chloroform); ¹H NMR δ 1.56 (s, 9H), 4.54 (m, 2H), 5.53 (dd, J=7.9, 5.6 Hz, 1H), 6.93 (m, 1H), 7.40 (m, 4H), 7.49–7.64 (m, 7H), 7.72 (br t, 1H), 8.19 (m, 1H); ¹³C NMR δ 25.86, 29.71, 34.39, 70.72, 74.58, 162.49; ³¹P NMR δ 25.42. Anal. calcd for $C_{25}H_{26}NOPCl_2Pd$: C, 46.90; H, 4.09; N, 2.19. Found: C, 46.71; H, 4.01; N, 2.25.

3.3.4. Dichloro{(S)-2-[(S)-2-(diphenylphosphino)ferrocenyl]-4-(isopropyl)oxazoline}palladium(II) 84% Yield: mp 265°C (dec); $[\alpha]_D^{20}$ -958 (c 0.04, chloroform); 1 H NMR δ 1.01 (d, J=6.9 Hz, 3H), 1.07 (d, J=6.9 Hz, 3H), 3.10 (m, 1H), 3.81 (s, 5H), 4.38 (br t, J=9.3 Hz, 1H), 4.49 (dd, J=8.8, 4.4 Hz, 1H), 4.53 (m, 1H), 4.77 (br s, 1H), 5.10 (br s, 1H), 5.33 (m, 1H), 7.26-7.41 (m, 5H), 7.64 (m, 3H), 8.33 (m, 2H); 13 C NMR δ 14.91, 18.77, 29.98, 73.14, 167.55; 31 P NMR δ 15.73. Anal. calcd for $C_{28}H_{28}NOPCl_2PdFe$: C, 51.06; H, 4.29; N, 2.13. Found: C, 51.17; H, 4.37; N, 1.99.

3.4. Preparation of imidates 1

A typical procedure is given for the preparation of (E)-2-hexenyl N-[4-(trifluoromethyl)phenyl]benzimidate 1a.

3.4.1. (E)-2-Hexenyl N-[4-(trifluoromethyl)phenyl]benzimidate 1a

To a mixture of 649 mg (4.03 mmol) of 4-trifluoromethylaniline and 608 mg (6.02 mmol) of triethylamine in 20 mL of dichloromethane was added 620 mg (4.41 mmol) of benzoyl chloride at 0°C and the reaction mixture was stirred for 30 min. The reaction mixture was washed with 10% hydrochloric acid. The organic layer was dried over sodium sulfate and concentrated under reduced pressure to give crude N-[4-(trifluoromethyl)phenyl]benzamide (1.04 g, 97% yield): ¹H NMR δ 7.52 (br t, J=7.9 Hz, 2H), 7.59 (br t, J=7.4 Hz, 1H), 7.64 (d, J=8.4 Hz, 2H), 7.79 (d, J=8.4 Hz, 2H), 7.88 (br d, J=8.3 Hz, 2H), 7.93 (br s, 1H).

A mixture of 596 mg (2.25 mmol) of N-[4-(trifluoromethyl)phenyl]benzamide and 469 mg (2.25 mmol) of phosphorus pentachloride was heated at 85°C for 1 h. After being cooled to room temperature, volatile materials were removed under reduced pressure to give crude N-[4-(trifluoromethyl)phenyl]benzimidoyl chloride (630 mg, 99% yield): ¹H NMR δ 7.07 (br d, J=8.35 Hz, 2H), 7.50 (br t, J=7.9 Hz, 2H), 7.58 (br t, J=7.4 Hz, 1H), 7.67 (d, J=8.4 Hz, 2H), 8.17 (br d, J=7.8 Hz, 2H).

To a suspension of 121 mg (2.20 mmol) of sodium hydride in 35 mL of THF was added a solution of 220 mg (2.20 mmol) of (*E*)-2-hexen-1-ol in THF (5 mL) at 0°C and the mixture was stirred for 10 min. To the mixture was added 610 mg (2.15 mmol) of N-[4-(trifluoromethyl)phenyl]benzimidoyl chloride at 0°C. The reaction mixture was stirred at room temperature for 4 h and a small amount of water was added. The entire solution was extracted with chloroform. The organic layer was dried over sodium sulfate, concentrated, and chromatographed on silica gel (eluent: EtOAc:hexane=1:19) to give 634 mg (83% yield) of (*E*)-2-hexenyl N-[4-(trifluoromethyl)phenyl]benzimidate (1a): ¹H NMR δ 0.92 (t, J=7.4 Hz, 3H), 1.45 (br sextet, J=7.4 Hz, 2H), 2.09 (br q, J=6.9 Hz, 2H), 4.81 (d, J=6.9 Hz, 2H), 5.75–5.91 (m, 2H), 6.78 (d, J=8.3 Hz, 2H), 7.22–7.34 (m, 5H), 7.42 (d, J=8.3 Hz, 2H).

3.4.2. (Z)-2-Hexenyl N-[4-(trifluoromethyl)phenyl]benzimidate 1a'

61% Yield; ¹H NMR δ 0.93 (t, J=7.3 Hz, 3H), 1.44 (br sextet, J=7.3 Hz, 2H), 2.17 (br q, J=7.3 Hz, 2H), 4.92 (d, J=6.4 Hz, 2H), 5.71 (m, 1H), 5.76 (m, 1H), 6.79 (d, J=8.3 Hz, 2H), 7.28 (m, 5H), 7.42 (d, J=8.3 Hz, 2H); ¹³C NMR δ 13.69, 22.64, 29.73, 62.91, 121.70, 124.11, 124.49 (q, J=30 Hz), 124.52 (q, J=272 Hz), 126.10 (br t, J=5 Hz), 128.09, 129.26, 130.22, 130.78, 134.82, 151.78, 159.13. Anal. calcd for C₂₀H₂₀NOF₃: C, 69.15; H, 5.80; N, 4.03. Found: C, 69.22; H, 6.07; N, 4.05.

3.4.3. (E)-2-Hexenyl N-(phenyl)benzimidate 1b

77% Yield; ¹H NMR δ 0.94 (t, J=7.4 Hz, 3H), 1.45 (br sextet, J=7.4, 2H), 2.08 (br q, J=6.9 Hz, 2H), 4.81 (d, J=5.9 Hz, 2H), 5.77 (m, 1H), 5.88 (m, 1H), 6.71 (br d, J=7.4 Hz, 2H), 6.94 (br t, J=7.3 Hz, 1H), 7.15–7.32 (m, 7H).

3.4.4. (E)-4-Methyl-2-pentenyl N-[4-(trifluoromethyl)phenyl]benzimidate 1c

86% Yield; ¹H NMR δ 0.95 (d, J=6.9 Hz, 6H), 2.27 (br octet, 1H), 4.72 (d, J=5.9 Hz, 2H), 5.63 (dt, J=15.2, 5.9 Hz, 1H), 5.76 (dd, J=15.2, 6.4 Hz, 1H), 6.69 (d, J=8.3 Hz, 2H), 7.13 (m, 2H), 7.22 (m, 3H), 7.32 (d, J=8.3 Hz, 2H); ¹³C NMR δ 22.12, 30.90, 67.80, 121.39, 121.68, 124.48 (q, J=32 Hz), 124.83 (q, J=270 Hz), 126.08 (q, J=4 Hz), 128.09, 129.26, 130.20, 130.88, 142.86, 151.81, 159.05. Anal. calcd for C₂₀H₂₀NOF₃: C, 69.15; H, 5.80; N, 4.03. Found: C, 69.05; H, 6.07; N, 3.76.

3.5. Asymmetric aza-Claisen rearrangement of imidates 1 with catalysts prepared from PdCl₂{(S)-bn-phox}

A typical procedure is given for the asymmetric rearrangement of **1a** (Table 1, entry 1). To a suspension of 2.0 mg (10 µmol) of AgBF₄ in 0.1 mL of dichloromethane was added a solution of 6.6 mg (11 µmol) of dichloro[(S)-(+)-2-(2-(diphenylphosphino)phenyl)-4-(benzyl)oxazolyl]palladium(II) [PdCl₂{(S)-bn-phox}] in 0.1 mL of dichloromethane at room temperature. After 5 min, precipitated silver chloride was removed by filtration. The filtrate was concentrated in vacuo to give an orange solid. The orange solid was dissolved in 0.2 mL of 1,2-dichloroethane and 34.7 mg (0.10 mmol) of (E)-2-hexenyl-N-[4-(trifluoromethyl)phenyl]benzimidate **1a** in 0.1 mL of 1,2-dichloroethane was added. The reaction mixture was stirred at 40°C for 24 h. After being cooled to room temperature, removal of solvent followed by preparative TLC on silica gel (hexane:EtOAc=19:1) gave 14.2 mg (41%) of N-(1-hexen-3-yl)-N-[4-(trifluoromethyl)phenyl]benzamide **2a**, (41% yield, 76% ee): $[\alpha]_D^{20}$ +51.3 (c 0.18, chloroform). H NMR δ 0.94 (t, J=7.4 Hz, 3H), 1.43 (br sextet, J=7.4 Hz, 2H), 1.57-1.65 (m, 1H), 1.68-1.76 (m, 1H), 5.22 (d, J=10.3 Hz, 1H), 5.23 (m, 1H), 5.29 (d, J=17.6 Hz, 1H), 5.89 (ddd, J=17.6, 10.3, 7.4 Hz, 1H), 7.14 (br d, J=8.8 Hz, 2H), 7.17 (br d, J=7.8 Hz, 2H), 7.24 (m, 3H), 7.14 (br d, J=8.4 Hz, 2H). The enantiomeric purity of **2a** was determined by HPLC analysis with a chiral stationary phase column.

Conditions: column, Daicel Chemical Industries Ltd, Chiralpack AD; eluent: hexane:isopropanol=9:1; detection 254 nm light. The absolute configuration was determined to be (S) by measurement of the specific rotation: $[\alpha]_D^{25}$ +50.5 (c 0.23, dichloromethane), lit.⁸ for (R)-2a of 55% ee: $[\alpha]_D^{25}$ -37.2 (c 0.5, dichloromethane).

3.5.1. (S)-(+)-N-(1-Hexen-3-yl)-N-phenylbenzamide 2b

88% Yield, 47% ee: $[\alpha]_D^{20}$ +28.4 (c 0.15, chloroform); ¹H NMR δ 0.94 (t, J=7.4 Hz, 3H), 1.45 (sextet, J=7.4 Hz, 2H), 2.08 (q, J=6.9 Hz, 2H), 4.81 (d, J=5.9 Hz, 2H), 5.77 (m, 1H), 5.85 (m, 1H), 6.71 (br d, J=7.4 Hz, 2H), 6.94 (br t, J=7.3 Hz, 1H), 7.15–7.32 (m, 7H).

3.5.2. (S)-(+)-N-(4-Methyl-1-penten-3-yl)-N-(4-trifluoromethyl)phenyl]benzamide 2c

30% Yield, 81% ee: $[\alpha]_D^{20}$ +71.9 (c 0.10, chloroform); 1H NMR δ 0.94 (d, J=6.9 Hz, 3H), 1.19 (d, J=6.9 Hz, 3H), 2.30 (m, 1H), 4.48 (br t, J=9.8 Hz, 1H), 5.21 (d, J=9.8 Hz, 1H), 5.22 (d, J=17.2 Hz, 1H), 5.91 (br t, J=9.8 Hz, 1H), 7.14 (d, J=8.3, 2H), 7.15–7.26 (m, 5H), 7.45 (d, J=8.3 Hz, 2H); 13 C NMR δ 20.24, 20.37, 29.81, 70.36, 119.09, 123.71 (q, J=274 Hz), 125.91 (br s), 127.90, 128.39 (q, J =34 Hz), 128.71, 129.43, 129.66, 135.96, 136.48, 146.11, 170.55. Anal. calcd for $C_{20}H_{20}NOF_3$: C, 69.15; H, 5.80; N, 4.03. Found: C, 69.08; H, 5.84; N, 3.97.

Acknowledgements

This work was supported by the 'Research for the Future' Program, the Japan Society for the Promotion of Science and a Grant-in-Aid for Scientific Research, the Ministry of Education, Japan. Y. U. thanks the Shorai Foundation for Science and Technology for partial financial support of this work.

References

- 1. For reviews, see: (a) Rhoads, S. J.; Raulins, N. R. Org. React. 1975, 22. (b) Overman, L. E. Acc. Chem. Res. 1980, 13, 218. (c) Winterfeldt, E. Foryschr. Chem. Forsch. 1971, 16, 75. (d) Ziegler, F. E. Acc. Chem. Res. 1977, 10, 227.
- For recent examples, see: (a) Mizutani, M.; Sanemitsu, Y.; Tamaru, Y.; Yoshida, Z. J. Org. Chem. 1983, 48, 4583. (b) van der Baan, J. L.; Bickelhaupt, F. Tetrahedron Lett. 1986, 27, 6267. (c) Ohshima, M.; Murakami, M.; Mukaiyama, T. Chem. Lett. 1984, 1535. (d) Sugiura, M.; Nakai, T. Terahedron Lett. 1996, 37, 7991. (e) Hayashi, T.; Yamamoto, A.; Ito, Y. Synth. Commun. 1989, 19, 2109. (f) Lutz, R. P. Chem. Rev. 1984, 84, 205. (g) Trebellas, J. C.; Olechowski, J. R.; Jonassen, H. B. J. Organomet. Chem. 1966, 6, 412. (h) Heimbach, P.; Molin, M. J. Organomet. Chem. 1973, 49, 477. (i) Heimbach, P.; Molin, M. J. Organomet. Chem. 1973, 49, 483. (j) Overman, L. E.; Jacobsen, E. J. J. Am. Chem. Soc. 1982, 104, 7225.
- 3. (a) Overman, L. E. Angew. Chem., Int. Ed. Engl. 1984, 23, 579. (b) Schenck, T. G.; Bosnich, B. J. Am. Chem. Soc. 1985, 107, 2058. (c) Ikariya, T.; Ishikawa, Y.; Hirai, K.; Yoshikawa, S. Chem. Lett. 1982, 1815. (d) Metz, P.; Mues, C.; Schoop, A. Tetrahedron 1992, 48, 1071. (e) Gonda, J.; Helland, A.-C.; Ernst, B.; Bellus, D. Synthesis 1993, 729. (f) Mehmandoust, M.; Petit, Y.; Larchevêque, M. Tetrahedron Lett. 1992, 33, 4313.
- 4. Calter, M.; Hollis, T. K.; Overman, L. E.; Ziller, J.; Zipp, G. G. J. Org. Chem. 1997, 62, 1449.
- (a) Ozawa, F.; Kubo, A.; Hayashi, T. J. Am. Chem. Soc. 1991, 113, 1417. (b) Ozawa, F.; Kubo, A.; Hayashi, T. Tetrahedron Lett. 1992, 33, 1485. (c) Ozawa, F.; Hayashi, T. J. Organomet. Chem. 1992, 428, 267. (d) Ozawa, F.; Kobatake, Y.; Hayashi, T. Tetrahedron Lett. 1993, 34, 2505. (e) Ozawa, F.; Kubo, A.; Matsumoto, Y.; Hayashi, T.; Nishioka, E.; Yanagi, K.; Moriguchi, K.-I. Organometallics 1993, 12, 4188.
- 6. (a) Uozumi, Y.; Kato, K.; Hayashi, T. J. Am. Chem. Soc. 1997, 119, 5063. (b) Uozumi, Y.; Kato, K.; Hayashi, T., submitted.
- 7. Shibasaki and Overman independently reported an asymmetric Heck reaction, where cationic chiral palladium(II) brought about high catalytic activity as well as enantioselectivity, see: (a) Sato, Y.; Sodeoka, M.; Shibasaki, M. J. Org. Chem. 1989, 54, 4738. (b) Carpenter, N. E.; Kucera, D. J.; Overman, L. E. J. Org. Chem. 1989, 54, 5846.

- 8. Recent examples of catalytic asymmetric reactions by use of cationic chiral palladium complexes, see: (a) Sodeoka, M.; Ohrai, K.; Shibasaki, M. J. Org. Chem. 1995, 60, 2648. (b) Sugiura, M.; Nakai, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 2366.
- (a) Dawson, G. J.; Frost, C. G.; Williams, J. M. J.; Coote, S. J. Tetrahedron Lett. 1993, 34, 3149.
 (b) Sprinz, J.; Helmchen, G. Tetrahedron Lett. 1993, 34, 1769.
 (c) von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 566.
- 10. The effect of various silver salts, AgOTf, AgSbF₆, AgPF₆, and AgOCOCF₃, was examined. Similar asymmetric induction and catalytic activity were observed for all salts except AgOCOCF₃ (little catalytic activity under the same reaction conditions).
- 11. (a) Sammakia, T.; Latham, H. A.; Schaad, D. R. J. Org. Chem. 1995, 60, 10. (b) Richards, C. J.; Damalidis, T.; Hibbs, D. E.; Hursthouse, M. B. Synlett 1995, 74. (c) Nishibayashi, Y.; Uemura, S. Synlett 1995, 79.
- For recent reviews, see: (a) Togni, A.; Venanzi, L. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 497. (b) Pfaltz, A. Acc. Chem. Res. 1993, 26, 339.
- 13. Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M. M. J. Am. Chem. Soc. 1991, 113, 726.
- 14. Müller, D.; Umbricht, G.; Weber, B.; Pfaltz, A. Helv. Chim. Acta 1991, 74, 232.
- 15. Uozumi, Y.; Kyota, H.; Kishi, E.; Kitayama, K.; Hayashi, T. Tetrahedron: Asymmetry 1996, 7, 1603.
- 16. Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.; Taketomi, T.; Akutagawa, S.; Noyori, R. *J. Org. Chem.* **1986**, *51*, 629.
- 17. Matsumoto, Y.; Hayashi, T.; Ito, Y. Tetrahedron 1994, 50, 335.